Muonic Alkyl Radicals with α - or β -Phosphorus Substituents: (EtO)₂P(O)CHCH₂Mu and H₂CCH(Mu)P(O)(OEt)₂

Christopher J. Rhodes,^a Martyn C. R. Symons,^{*a} Christopher A. Scott,^b Emil Roduner,^c and Martin Heming^c

^a Department of Chemistry, The University, Leicester LE1 7RH, U.K.

Butherford Appleton Laboratory, Chilton, Didcot, Oxon. OX11 0QX, U.K.

e Physikalisch-Chemisches Institut, Zürich University, CH-8057, Zürich, Switzerland

The magnitudes of the muon–electron hyperfine coupling constants for the title radicals show that the muonium atom favours the out-of-plane site for the α -P substituted radical, but is constrained towards the in-plane site for the β -P substituted radical.

While many alkyl radicals containing muonium atoms β - to the trigonal carbon are known,¹ there has been little work on muonic radicals containing hetero-atoms, especially 'heavy-atom' substituents,² and we know of no previous work on muonic phosphorus-containing radicals.

We have succeeded in detecting both radicals (1) and (2) (Figure 1), the results making an interesting contrast. The hyperfine coupling for (1) is less than a'(Mu) for CH_2CH_2Mu at room temperature^{1,3} [*ca.* 37.2 G (1 G = 10⁻⁴ T): a'(Mu) = the true coupling divided by 3.184, the ratio of the muon and proton magnetic moments], whereas that for (2) is close to that for muonic ethyl.

The ratio of the muon coupling in $H_2\dot{C}CH_2Mu$ to the methyl proton coupling in $H_2\dot{C}-CH_3^1$ is *ca.* 1.4. This large isotope effect is, at least in part, caused by the muonium atom exhibiting a preference for the 'out-of-plane' site. For radical (2), this remains the case, the α -P(O)(OEt)₂ group having no specific effect on the muon coupling. However, for radical (1), the muon coupling is clearly reduced relative to $H_2\dot{C}CH_2Mu$, suggesting that the $P(O)(OEt)_2$ group dominates the conformation in this case.

It is well established, both from the large hyperfine coupling to ${}^{31}P$ nuclei in β -positions,⁴ and the small couplings to

Figure 1. Muon spin rotation (μ .s.r.) spectrum recorded during muon implantation in CH₂=CHP(O)(OEt)₂, showing features assigned to: (a) (EtO)₂P(O)CHMuCH₂ and (b) CH₂MuCHP(O)(OEt)₂; (c) is the signal from muons in diamagnetic environments.

 β -protons⁴ in normal protiated radicals of type (1), that the preferred conformation is indeed that in which the σ - π overlap for the C-P bond is maximised.

These results are in line with those recently obtained² for radicals (3) and (4). In both these radicals, a'(Mu) is less than that in $\dot{C}H_2CH_2Mu$, and falls on cooling, in contrast with the result for $H_2\dot{C}CH_2Mu$ where the coupling increases on cooling.^{1,3} Thus, again, we conclude that the heavy atom substituents (SiR₃) dominate over the bound muonium atom for the conformational control of these radicals. However,

when compared with the corresponding protiated species,^{2,5} there is still a large muon isotope effect (*ca.* 1.4) for these radicals, suggesting that the mean conformations are still skewed in favour of the muon to some extent.

Finally, we note that the muon hyperfine coupling for the $H_2CCHMuSi(OMe)_3$ radical (29.09 G) is slightly less than that for the phosphorus-containing radical, $H_2CCHMuP(O)(OEt)_2$ (29.88 G) at room temperature. This fall on going from Si to P accords with the concept of conformational control through hyperconjugative electron transfer from the C-X bond, since this is expected to be stronger for C-Si than for C-P σ -electrons.

We thank the S.E.R.C. for a grant to C. J. R.

Received, 27th October 1986; Com. 1528

References

- 1 E. Roduner, W. Strub, P. Burkhard, J. Hochmann, P. W. Percival, H. Fischer, M. J. Ramos, and B. C. Webster, *Chem. Phys.*, 1982, 67, 275.
- 2 D. A. Geeson, C. J. Rhodes, M. C. R. Symons, S. F. J. Cox, C. A. Scott, and E. Roduner, *Hyperfine Interactions*, 1987, in the press.
- 3 M. J. Ramos, D. McKenna, B. C. Webster, and E. Roduner, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 255; 267.
- 4 A. R. Lyons and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 622.
- 5 J. C. Scaiano and K. U. Ingold, J. Phys. Chem., 1976, 80, 275.